Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell Rep ; 41(11): 111799, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2122375

ABSTRACT

Although vaccination efforts have expanded, there are still gaps in our understanding surrounding the immune response to SARS-CoV-2. Measuring IgG Fc glycosylation provides insight into an infected individual's inflammatory state, among other functions. We set out to interrogate bulk IgG glycosylation changes from SARS-CoV-2 infection and vaccination, using plasma from mild or hospitalized COVID-19 patients, and from vaccinated individuals. Inflammatory glycans are elevated in hospitalized COVID-19 patients and increase over time, while mild patients have anti-inflammatory glycans that increase over time, including increased sialic acid correlating with RBD antibody levels. Vaccinated individuals with low RBD antibody levels and low neutralization have the same IgG glycan traits as hospitalized COVID-19 patients. In addition, a small vaccinated cohort reveals a decrease in inflammatory glycans associated with peak IgG concentrations and neutralization. This report characterizes the bulk IgG glycome associated with COVID-19 severity and vaccine responsiveness and can help guide future studies into SARS-CoV-2 protective immunity.


Subject(s)
COVID-19 , Vaccines , Humans , Antibody Formation , Glycosylation , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral
2.
J Proteome Res ; 21(12): 2987-2997, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2106307

ABSTRACT

SARS-CoV-2 Omicron (B.1.1.529) and its subvariants are currently the most common variants of concern worldwide, featuring numerous mutations in the spike protein and elsewhere that collectively make Omicron variants more transmissible and more resistant to antibody-mediated neutralization provided by vaccination, previous infections, and monoclonal antibody therapies than their predecessors. We recently reported the creation and characterization of Ig-MS, a new mass spectrometry-based serology platform that can define the repertoire of antibodies against an antigen of interest at single proteoform resolution. Here, we applied Ig-MS to investigate the evolution of plasma antibody repertoires against the receptor-binding domain (RBD) of SARS-CoV-2 in response to the booster shot and natural viral infection. We also assessed the capacity for antibody repertoires generated in response to vaccination and/or infection with the Omicron variant to bind to both Wuhan- and Omicron-RBDs. Our results show that (1) the booster increases antibody titers against both Wuhan- and Omicron- RBDs and elicits an Omicron-specific response and (2) vaccination and infection act synergistically in generating anti-RBD antibody repertoires able to bind both Wuhan- and Omicron-RBDs with variant-specific antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies , Immunotherapy , Antibodies, Viral
3.
Transpl Infect Dis ; : e13914, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1961997

ABSTRACT

BACKGROUND: The continuing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with decreased susceptibility to neutralizing antibodies is of clinical importance. Several spike mutations associated with immune escape have evolved independently in association with different variants of concern (VOCs). How and when these mutations arise is still unclear. We hypothesized that such mutations might arise in the context of persistent viral replication in immunosuppressed hosts. METHODS: Nasopharyngeal specimens were collected longitudinally from two immunosuppressed patients with persistent SARS-CoV-2 infection. Plasma was collected from these same patients late in disease course. SARS-CoV-2 whole genome sequencing was performed to assess the emergence and frequency of mutations over time. Select Spike mutations were assessed for their impact on viral entry and antibody neutralization in vitro. RESULTS: Our sequencing results revealed the intrahost emergence of spike mutations that are associated with circulating VOCs in both immunosuppressed patients (del241-243 and E484Q in one patient, and E484K in the other). These mutations decreased antibody-mediated neutralization of pseudotyped virus particles in cell culture, but also decreased efficiency of spike-mediated cell entry. CONCLUSIONS: These observations demonstrate the de novo emergence of SARS-CoV-2 spike mutations with enhanced immune evasion in immunosuppressed patients with persistent infection. These data suggest one potential mechanism for the evolution of VOCs and emphasize the importance of continued efforts to develop antiviral drugs for suppression of viral replication in hospitalized settings.

4.
J Vis Exp ; (180)2022 02 16.
Article in English | MEDLINE | ID: covidwho-1732305

ABSTRACT

Multiplex technologies for interrogating multiple biomarkers in concert have existed for several decades; however, methods to evaluate multiple epitopes on the same analyte remain limited. This report describes the development and optimization of a multiplexed immunobead assay for serological testing of common immunoglobulin isotypes (e.g., IgA, IgM, and IgG) associated with an immune response to SARS-CoV-2 infection or vaccination. Assays were accomplished using a flow-based, multiplex fluorescent reader with dual-channel capability. Optimizations focused on analyte capture time, detection antibody concentration, and detection antibody incubation time. Analytical assay performance characteristics (e.g., assay range (including lower and upper limits of quantitation); and intra- and inter-assay precision) were established for either IgG/IgM or IgA/IgM serotype combination in tandem using the 'dual channel' mode. Analyte capture times of 30 min for IgG, 60 min for IgM, and 120 min for IgA were suitable for most applications, providing a balance of assay performance and throughput. Optimal detection antibody incubations at 4 µg/mL for 30 min was observed and are recommended for general applications, given the overall excellent precision (percent coefficient of variance (%CV) ≤ 20%) and sensitivity values observed. The dynamic range for the IgG isotype spanned several orders of magnitude for each assay (Spike S1, Nucleocapsid, and Membrane glycoproteins), which supports robust titer evaluations at a 1:500 dilution factor for clinical applications. Finally, the optimized protocol was applied to monitoring Spike S1 seroconversion for subjects (n = 4) that completed a SARS-CoV-2 vaccine regimen. Within this cohort, Spike S1 IgG levels were observed to reach maximum titers at 14 days following second dose administration, at a much higher (~40-fold) signal intensity than either IgM or IgA isotypes. Interestingly, we observed highly variable Spike S1 IgG titer decay rates that were largely subject-dependent were observed, which will be the topic of future studies.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Vaccines , Humans , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity , Seroconversion , Spike Glycoprotein, Coronavirus
5.
Nat Commun ; 13(1): 688, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671561

ABSTRACT

Disparities in SARS-CoV-2 genomic surveillance have limited our understanding of the viral population dynamics and may delay identification of globally important variants. Despite being the most populated country in Africa, Nigeria has remained critically under sampled. Here, we report sequences from 378 SARS-CoV-2 isolates collected in Oyo State, Nigeria between July 2020 and August 2021. In early 2021, most isolates belonged to the Alpha "variant of concern" (VOC) or the Eta lineage. Eta outcompeted Alpha in Nigeria and across West Africa, persisting in the region even after expansion of an otherwise rare Delta sub-lineage. Spike protein from the Eta variant conferred increased infectivity and decreased neutralization by convalescent sera in vitro. Phylodynamic reconstructions suggest that Eta originated in West Africa before spreading globally and represented a VOC in early 2021. These results demonstrate a distinct distribution of SARS-CoV-2 lineages in Nigeria, and emphasize the need for improved genomic surveillance worldwide.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Adolescent , Adult , Africa, Western , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Female , Genome, Viral , Humans , Male , Middle Aged , Mutation , Nigeria/epidemiology , Phylogeny , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Young Adult
6.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1560547

ABSTRACT

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Mass Spectrometry , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL